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The results given in this work shot, that coordination compounds with 'frozen' 
ligand conformation may serve as ekamples to illustrate the Azcwws-Sbita rule 
concerning the stereochemistry of hetarogeneous catalytic hydrogenation [15]. 

We thank the Swiss National Foundatioh fw Scientific Research for financial assistance aa well 
as Dr. K. Noack from Hoffmm-La Roche fpr CD.-spectra. 
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90. Considerations on the Interpretation of Mass Spectra 
via Learning Machines 

by PhMppe gent and Tho Gfiumann 
Department of Physical-Chemistry of the Ecole Polytechnique Fddkrale of Lausanne 

(16. I. 75) 

Summary. The application of learning machine techniques to the interprctation of mass 
spectra is investigated. An attempt to inlprove the cbaracteristic ratio of the number of training 
points to the number of adjustable parameten is madc by the use of reduced spectra. The ensuing 
results are korrectcd for the unequal representation of the different substances in the data bank. 
ReaPonable performance is  obtained fdr spectra of simple (monofunctional) substances, but 
predictive abilities are poor for more complicated substances. 

Introduction. - The automated interpretation of mass spectra bas been at- 
tempted by a variety of methods including library matching [l], artificial intelligence 
[Z], nearest neighbour techniques [6] and learning machines [43. The association of 
the first two methods has also beeh advanced in [5] and a review of the latter two 
methods, as well as some related tdchniques appears in [6]. 

Library matching requires a large bank of spectra if there is to be a reasonable 
probability of correct structure elucidation. Substantial memory requirements and 
access time are disadvantages here. 

Computer times remain an important factor with artificial intelligence methods 
and, as with library matching, moderate size computers are necessary. Nearest neigh- 
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bour techniques and analysis via learning machine vectors are related and escape 
both constraints through the reduced dimensionality of the problem and the possible 
use of a desk calculator. 

Contradictory opinions have been voiced concerning the validity of learning 
machines as an interpretive tool for mass spectra [4] [7] [S]. The object of this paper 
is to present the results which we have obtained with this technique, emphasis being 
placed on the ease of subsequent interpretation. 

Data Bank. - A bank of 1601 mass spectra from the Aldermaston tapes, with 
appended Wiswesser Line Notation formulae, was used in this study. A summary 
of the substances represented is shown in Table 1. The elements of structure specified 
in the first column are considered functions. Secondary and tertiary carbon atoms 
have also been listed, but are not considered functions here. The functions chosen 
correspond to simple character groups in the Wiswesser Line Notation [9]. 

The numbers in the second column, headed ‘l’, indicate the number of spectra of 
substances containing the corresponding structural element when the molecule con- 

Table 1. Data Bank 
~ ~ ~ ~~~ ~ 

No Function 1 2 3 > 4  0 9 2  All 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Primary alcohol 
Secondary alcohol 
Tertiary alcohol 
Ether 
Ketone 
Aldehyde 
Acid 
Ester 
Dioxo 
Primary amide 
Secondary amide 
Tertiary amide 
Primary amine 
Secondary amine 
Tertiary amine 
Phenyl 
Insaturation 
Cycles 

Tertiary carbon 
Secondary carbon 

Total 

45 179 54 ’ 

25 48 5 
8 17 0 

61 134 69 
34 52 40 
29 54 17 
24 41 12 

155 145 15 
0 1 10 
4 5 1 
0 1 1 
2 1 0 

25 17 4 
14 22 16 
16 41 55 
68 196 44 
42 288 115 
23 180 130 

58 46 1 
206 169 26 
575 711 196 

25 - 

2 
0 

- 

- 
43 - 
43 - 
20 - 

14 - 

- 7 

2 
0 
0 
0 
5 

- 

- 

- 
- 
- 

13 - 
26 - 
11 - 

75 - 
79 - 

5 3 
2 22 

89 30 

224 
73 
25 

195 
86 
83 
65 

300 
1 
9 
1 
3 

42 
36 
57 

264 
330 
203 

107 
397 

1286 

303 
80 
25 

307 
169 
120 
84 

329 
13 
10 
2 
3 

51 
65 

138 
319 
520 
41 2 

113 
425 

1601 

‘Phenyl’ corresponds to unfused benzene rings, fused rings appear under ‘Cycles’. 
‘Insaturation’ will not appear with unfused benzene rings. 
Heterocycles with nitrogen and oxygen will appear as ‘Secondary’ or ‘Tertiary amine’ and 

E.g.  CH,-CO-CH,-CO-CH, is a monofunction. 
‘Ether’ respectively, as well as under ‘Cycles’. 

tains one or more of only one type of function. The line ‘Total’ gives the total number 
of spectra of such monofunctions. Similarly, the column headed ‘2’ indicates the 
number of spectra with two types of function present in the molecule (difunctions), 
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and the total number of such spectra. Columns ‘3’ and ‘4’ correspond to spectra of 
substances containing three types of functions and to those mntaining four or more 
types of functions respectively. Paraffins appear undcr the heading ‘0’. The columns 
headed ‘2’ and ‘All’ furnish the number of spectra with two types of functions or lcss, 
and the total number of spectra contdning thc corresponding function, respectively. 

Substances containing atoms other than carbon, hydrogen, oxygcn and nitrogen 
have been excluded. 

General. - An i:itroduction to the theory of lcarning machines may be found in 
[lo]. Briefly, the method consists of nepresenting patterns (spectra) as points in (n- 
dimensional) hyperspace and seeking (n-1-dimensional) hypersurfaces which will 
divide that hyperspace into regions rontaining all and only points representing a 
specified class of pattern. The surface is representcd by a ‘weight vector’, W, whosc 
components or ‘weights’ are the coefficients of the tcrms of the polynomial expression 
of the surface. The components of the ‘pattern vector’, X, reprcsenting a point, cor- 
respond to the terms of the polynomial. The scalar product of the weight vector and 
the pattern vector will give the distalice from thc point to the surface; the sign of 
such product will define a positive add a negative side of the surface. 

Normally, one surface is used to dstinguish between two complementary classcs, 
the presence or absence of a specific feature for cxarnple. Although it is possible to 
distinguish between more than two, lfiot nccessarily complementary classcs with one 
surface, the treatment is more compjicated; it is easier to create a series of ‘yes-no’ 
surfaces to implement higher logic. 

The quest of the required surfact.,$ is the central problem. For this the data bank 
is separated into two parts: trainiqg sets for sceking the required surfaces, and 
prediction sets for evaluating the suafaces’ performance as classifiers. 

Training proceeds by first definiqg an initial, arbitrary weight vector. Each pat- 
tern point of the training set is then tresentcd, onc by one, for a response. A positive 
scalar product of the pattern vcctor and the weight vector is considered a positivc 
response, indicating, for exampre, the presence of a certain fcaturc. A negative 
scalar product is considered a negative response and indicatcs tho absence of the 
feature in this case. If the response is correct, thc next point is presented. If the 
response is incorrect, the weight vectpr is modified before the next point is prcsentcd. 
The process is repeated until all the points of the training set are correctly classified 
by the weight vector (100% recognition), or some arbitrary limit attained. 

The negative feedback thus imposed on thc weight vector upon erroneous response 
is of the form: 

W =  W - f  K * S n - X  

where W‘ is the new weight vector 
W the previous weight vector 
Sn the sign of the correct response 
X the pattern vector incorrecjtly classiiicd 
K is either a constant, the smallcst integer greater than I (W. X) I@ X), or 
an expression of the type K * A - I (W * X) l / (X - X), where 0 < f < 2. 

and 
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The three possibilities for K correspond, respectively, to the ‘fixed increment’, 

the ‘absolute’ and the ‘fractional correction rule’. The flow diagram in Fig. 1 sum- 
marizes the training sequence. 

The value of the ratio TIN, where T is the number of points in the training set 
and N is the number of adjustable weights necessary for one classification, is of 
interest. For high values of TIN, a surface trained to 100% recognition should have 
a good predictive ability. For a low value of T/N,  training will be faster but pre- 
dictive ability questionable, and the influence of the initial weight vector more 
pronounced. A value of TIN greater than two is considered to be essential, values 
greater than five are recommended [ll]. 

1 

I 
I R = w“9; l e e 5  

Last point 7 

I 
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The use of a large number of parameters to characterize a pattern or the use of 
complicated decision surfaces is unfavourable, as is the use of ‘committees’ or ‘layers’ 
of surfaces, for all increase the value of N .  An increase in T may be difficult to manip- 
ulate, may prevent 100% recognition from being attained and will adversely affect 
training times. 

The predictive ability is, however, the final test as to the validity of a decision 
surface. To evaluate it, the points of the prediction set are presented for response by 
the weight vector and a tally is kept of correct responses. No corrections are made 
on the weight vector. 

Experimental Part 

In the present study the aim was to  identify the presence of characteristic groups of atoms 
within the molecule via its mass spectra. The criteria may be a function as cited in Table 1, or any 
one of several of those functions taken together (the presence of oxygen for example). The first 
column of Table 2 lists the criteria used. 

In order to reduce the number of parameters characterizing the spectra, the corresponding 
reduced spectra between masses 21 and 118 are used. When I ,  is the intensity of the peak at 
M / e  = m of a mass spectrum, the intensities, Rj, of the fourteen peaks of the reduced mass 
spectrum are derived from the following formula: 

6 

The spectra are normalized for total ionisation equal to one. 
As suggested in [12], use is made of an average reduced spectrum for each of the 16 functions 

of table 1 present as monofunctions. The intensities, A p , ,  of the average reduced spectrum of 
function p are given by: 

A p ,  = (ZRj)/Np for j = 1,2, ... 14 

where N p  is the number of reduced spectra of monofunctions containing function p used to obtain 
the average reduced spectrum of that function, and the summation is over those spectra. 

To create a buffer zone around each of the 16 main points, the 120 (= 16 . 15/2) simple linear 
combinations between the 16 average reduced spectra obtained above are employed. The inten- 
sities, Bpqj ,  of such a combination between the average reduced spectra of function p and function 
q are calculated using the relation : 

Bpq, = ( A p j  + A q j ) / 2  for j = 12, ... 14 and p # q 

where A p ,  and A q, are the intensities of the average reduced spectra of function p and q respectively. 
The training set consisted of the 16 average reduced spectra and the 120 linear combinations 

between them. 
The decision surfaces used here are either hyperplanes (HP) with N = 15 or hyperspheres 

(HS) with N = 16. With 136 pattern points in the training set we obtain a TIN ratio of 9.1 for 
hyperplanes and 8.5 for hyperspheres. The hypersphere has the advantage of being able to com- 
pletely enclose a region of hyperspace with only one supplementary adjustable weight. A com- 
mittee of hyperplanes (one more than there are dimensions) may also achieve this, but with 
catastrophic consequences on the TIN ratio (TIN = 0.6). Tests have been conducted using 
generalized quadratic surfaces (hyperparaboloid, hyperellipsoid or hyperhyperboloid) with 
N = 120 and TIN = 1.1, and quadratic surfaces with axes parallel to  the reference axes with 
N = 29 and TIN = 4.7, yielding, however, mediocre results (<P) 

A null initial weight vector is chosen to minimise the effects of the choice when short training 
times are involved. Negative feedback is applied, as mentioned above, using the fixed increement 
correction rule with K = 1. An unmodified fractional correction rule does not permit the use of a 

60%). 
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null initial weight vector and, as with the absolute correction rule, leads, in our experience, to 
lower predictive abilities, despite shorter training times, than the fixed increment rule chosen. 

Pattern vector components 1 to 14 are the intensities of the peaks of the reduced mass 
spectra; a fifteenth component is used when a hyperspherical decision surface is desired and is 
the sum of the squares of the intensities of the peaks of the reduced spectra. A last component 
is equal to one. 

Weight vector components 1 to  14 are put under a special constraint impeding negative values 
which would have little physical meaning in the case of mass spectra. The remaining components 
are free of constraints. 

Training is stopped when 100% recognition is attained or when 1000 passes through the 
training set have taken place, whichever first occurs. 

Results. - When evaluating predictive abilities, prediction subsets are taken 
sequentially from the bank summarised in Table 1, for each criterion. 

Prediction subsets for monofunctions nominally contain 30 spectra of positive 
class and 30 spectra of negative class. The subsets for difunctions nominally contain 
32 spectra of each class. 

The percentage of correct classifications is calculated separately for the positive 
(P+) and the negative (P-) class: 

number of points correctly classified positive (negative) 
number of points of positive (negative) class tested 

P+(P_) = - 100 

and an average prediction, ( P ) ,  calculated: 

( P )  = (P+ + P J / 2  

A confidence level is also defined for each class: 

number of points correctly classified positive (negative) 
number of points classified positive (negative) 

C+(C-) = * 100 

and an average confidence calculated: 

In Table 2, the results under the heading ‘HP’ are the predictions and confidence 
levels obtained when hyperplanar decision surfaces were used. Results obtained with 
hyperspherical decision surfaces appear under the heading ‘HS’. An asterisk after 
the figures for ( P )  indicates that training was stopped without 100% recognition 
being attained after 1000 passes through the training set. 

The first group of results pertains to spectra of monofunctional substances. 
Results pertaining to spectra of difunctional molecules appear in the second group. 

Discussion and conclusion. - When considering the results in Table 2, it 
should be noted that the mode of presentation eliminates effects due to a possible 
inequality in the number of spectra present in each class. Accordingly, an average 
prediction or confidence level of fifty percent signifies a useless ‘decision’. One should 
also take into account a statistical error of l/iG, where M is the total number of 
spectra (dependent on the data bank) in the prediction subset. 
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If one i s  concerned with simplc, monofunctional substances, the results seem 
sufficient to justify the use of our decision surfaces as an aid to the (inexperienced) 
human interprcter seeking confirmation of the presence or absence of a suspected 
group of atoms. 

Difunctional substances are the first step to more complicated molecules, and 
the decision surfaces obtained are inadcquate for th.eir interpretation. 

If a larger number of parameters than those employed here is used, the ease of 
subsequent interpretation will suffer and problcrns will arise in order to maintain a 
reasonable TIN ratio so that insignificant information is not used for decision making. 
The separation of significant from inslgnificant information is essential and explains 
the use we have made of average reduced mass spectra for training; indeed, the 
risk of irrelevant information (in the form of a singular case) influencing a decision 
surface during training is greatly diminished. As with library searches and nearest 
neighbour techniques, the learning machine approach is valid for substances con- 
tained in the space spanned by the training set. Artificial intelligence is not thus 
Iimited, 

In conclusion, better predictive abilities than those obtained here are necessary 
before the proposed interpretation of mass spectra can compete with library searches 
or artificial intcll igence systems when complcx molecules are involved. We believe 
that an improvement of predictive abilities in this case lies not in the use of a largc 
number of parameters, but in the use of a rcstricted number of sophisticated para- 
meters and on decision surfaces based not on simple ‘Chemical’ structural groups 
but, again, on more sophisticated criteria. The problem is to determine such para- 
meters and criteria systematically. 

Thanks are extended to Ilr. Clerc for the spcctra and the corresponding Wisuresser formulae. 
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